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Abstract-Presented herein is a mathematical model of the liquid pressure drop occurring in triangular 
grooves. The model considers the interfacial shear stresses due to liquid-vapor frictional interaction, and 
a dimensionless vapor-liquid interface flow number, L,, is introduced. Results are reported for channel 
angles ranging from 20 to 60”, contact angles from 0 to 60”, and dimensionless vapor-liquid interface flow 
numbers of 0, 0.25, 0.5, 0.75, and 1. These results indicate that the friction factor Reynolds number product 
1s strongly dependent upon the channel angle, the contact angle, and the dimensionless vapor-liquid 
interface flow number. The predicted results agree well with the documented and avaiIable experimental 

data for the cases L, = 1 and L, = 0. 

INTRODUCTION 

SMALL OR “microgrooves” of various shapes and sizes 
have been employed in a wide variety of applications 
in the chemical process industry to enhance the heat 
transfer and promote the flow of liquid to surfaces 
where evaporation occurs and away from condensing 
surfaces. Because of the potential cost savings 
involved, numerous investigations have been conducted. 
The recent development of micro heat pipes for use in 
the thermal control of high power transistors, LSI and 
VLSI circuits, and avionics packages, however, has 
stimulated a renewed interest in the flow in these 
channels. 

Over the past 10 years, several analytical and exper- 
imental investigations of the vapor-liquid behavior in 
micro heat pipes have been conducted. In the initial 
micro heat pipe model, the vapor-liquid interface vel- 
ocity was assumed to be zero [l]. Although reasonably 
accurate predictions of the performance of micro heat 
pipes were obtained using this model, some error was 
introduced. Somewhat later, steady-state [2] and tran- 
sient [3] models were developed for trapezoidal micro 
heat pipes approximately 1 mm in dia. Although these 
models considered the frictional vapor-liquid inter- 
action on the liquid flow by incorporating the friction 
factor,f, , they utilized the results obtained previously 
by Sparrow et al. [4], which indirectly assumed that 
the vapor-liquid interface velocity was zero. Again, 
while predicting the performance reasonably well, 
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some error was introduced due to this assumption. 
This work was followed by a model that included 
terms to account for the interfacial and vapor shear 
stress [5]. In calculating the friction factor, however, 
this model again assumed no frictional vapor-liquid 
interaction on the liquid flow, due to the lack of a 
method for estimating the correct friction factor. 

As early as 1964, Sparrow et al. [4] investigated the 
flow inside internally finned annular flow passages and 
obtained an analytical solution for the pressure drop 
in fully developed laminar flow. The results obtained 
were shown .to be accurate for single-phase flow in a 
finned annular flow passage in which the velocity at 
the boundaries was zero. Sometime later, Ayyaswamy 
et al. [6] conducted an investigation of capillary flow 
with a free surface in triangular grooves and found 
the solution to the two-dimensional equations of 
motion for steady laminar flow in grooves using. 
Galerkin methods, but the vapor-liquid interaction 
on the liquid flow was still neglected. 

In the current investigation, the etTect of the inter- 
facial shear stresses caused by the liquid-vapor fric- 
tional interaction occurring for flow in triangular 
grooves is investigated to determine how these forces 
affect the liquid pressure drop. 

L 
ANALYSIS 

If the capillary flow of an incompressible New- 
tonian fluid in a groove with fully developed laminar 
vapor flow over the upper surface similar to that illus- 
trated in Fig. 1 is considered, it is clear that the flow 
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a 
A 

P 
HP 

K 
L 

NOMENCLATURE 
coefficient defined by equation (12) 
cross-sectional area [m”] 
hydraulic diameter [m] 
frictional factor 
dimensionless number defined by 
equation (13) 
constant 
dimensionless vapor-liquid interface 
flow number 
pressure [N m-‘1 
volume flow rate [m’ s- ‘1 
radial coordinate [m] 
radius defined by equation (9) [ml 
radius defined by equation (10) [m] 
groove boundary length [m] 
groove boundary length [m] 

Re 
2.4 

0 
Uf 
af 

u* dimensionless velocity 
x coordinate defined by equation (3) 
z axial coordinate [ml. 

Reynolds number 
velocity [m s- ‘1 
average velocity [m s- ‘1 
velocity of free surface liquid [m s- ‘1 
average velocity of free surface liquid 
[m s-l] 

Greek symbols 
M: contact angle [“I 

: 
angular coordmate [“I 
channel half angle [“I 

P viscosity [kg m- ’ s- ‘1 
P density [kg mP3]. 

velocity and behavior of the liquid surface will be 
strongly influenced by the vapor flow direction and 

la a24 

( > 

1 a224 1 dp -- y_ +_--__ 
rar dr 

velocity. Utilizing a cylindrical coordinate system with 
r2 a82 p dz’ (1) 

the axis coincident with the apex (0), and assuming where u is the axial velocity, z the corresponding axial 
two-dimensional, fully developed flow of the liquid coordinate, and p is the static pressure. The boundary 
can be expressed as : conditions for this expression are as follows : at 8 = 0 

Vapor 

rz i Liquid 

f r”/ CP 

FIG. 1. Groove geometry and coordinate system. 
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and 6’ = 24, the velocity is equal to zero (i.e. a no slip 
condition at the wall is assumed) ; when Y = rz, the 
velocity of the liquid surface is equal to iir2. In order to 
obtain a general solution, a radius rl can be assumed. 
When Y = y1 the liquid velocity is equal to zero and, 
as rl + 0, the solution corresponds to that obtained 
for a triangular groove, closed on all three sides. 
Applying a coordinate transformation : 

u* _ u + r2 /4~( - dpldz) - I (2) 
$ ( - dp/dz) 

x=ln? > 
Yl (3) 

the governing equation and boundary conditions 
become, respectively : 

a2u* d2u* 
-+ 

ax2 == O, (4) 

‘2 
2 

u* = I = e2* 0 at 13 = 0, 
Tl 

(5) 

g+= ?I 0 
2 

= e2x 

r1 
at 0 = 24, 

at x=ln ?. 
0 PI 

For capillary flows at very low Bond numbers, the free 
surface will have a nearly constant radius of curvature, 
dependent upon the geometric shape of the liquid flow 
passage. The radii, rl and r2, can be written as : 

(9) 

r2 = yw2 

X 
cos cI cos (4 - 0) - [sin2 4 - cos2 a sin’{@ -@lo-’ 

cos (a + $b) 

(10) 

Analytical and numerical methods 
Equation (4) is a form of the Laplace equation 

where the exact solution is subject to the boundary 
conditions given in equations (5)-(8). The exact solu- 
tion can be obtained utilizing a separation of variables 
method and linear superposition. The velocity u can 
be obtained as : 

sinh [z(a-x)] +Hp sinh (Ex) 

X 

n7c0 
x sm 29 + z jY, ( > 

;[ 1-(- I,($] 
r X 

1+ 2 ( > 
2 

sinhr:(2+R)] +sinhcH) 

X 

where : 

Hp = 
a,> -I- 4 /4A - dpldz) 

2 (-dp/dz) 

J (13) 

and the term, iiT2, in equation (13) represents the aver- 
age velocity of liquid surface at r = r2. This value 
depends not only on the flow characteristics and 
properties of the liquid, but also on the flow charac- 
teristics and properties of the vapor. It is quite difficult 
to obtain a general analytical solution for this term 
directly from the governing equations, since the flow 
of the liquid surface with the influences of vapor is 
not one-dimensional and therefore has an irregular 
cross-section. 

To overcome these difficulties, the following analy- 
sis first assumes that the flow of the liquid surface is 
laminar, steady-state, and one-dimensional, and that 
the vapor-liquid frictional interaction has no effect on 
the liquid flow, i.e. the liquid surface is a free liquid 
surface without frictional influences. The momentum 
equation under these assumptions is 

d*u, dp 
PcL=- y2 do2 dz’ (14) 

where ur is the free liquid surface velocity without the 
influence of vapor shear stress and resulting friction. 
Utilizing the coordinate system shown in Fig. 2, the 
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FIG. 2. Groove boundary influences on vapor-liquid interface 

boundary conditions corresponding to equation (14) 
are : 

Uf = 0 at B=O, (15) 

uf = 0 at 0 = 24. (16) 

The solution of equation (14) with these boundary 
conditions is : 

uf= (-6%) 

~;,{cosacos(q5 -@-[sin’+ -cos2asin2(~ -@lo.‘} 

[ 1 2 
X 

cos (c( + 4) 

x [4$~6-28~]. (17) 

For convenience, especially in the actual case, the 
average velocity of the liquid flow usually is preferred. 
Taking the average as : 

J‘ 

29 
uf- ds 

0 
a; = 

s 

w . 
(18) 

d0 
0 

The average velocity of the free liquid surface with a 
one-dimensional assumption may be obtained as : 

X 
~~Z{~~~acos(#-Q)-[sin2+cos20rsin2(~-~)]o-5) ’ ( cos (a + q5) > 

x [4$8-228*] de. (19) 

While the solution obtained above is for one-dimen- 
sional flow, in reality, the velocity of the free liquid 

surface (i.e. at point A) not only depends on the influ- 
ence of point 3, but also on the influence of points C, 
D, and the entire boundary along the solid surface 
from 0 to D. Since the one-dimensional assumption 
is not identical with the actual case, a coefficient K 
can be used to modify it. This coefficient, K, can be 
determined experimentally. 

Utilizing the data of Ayyaswamy et al. [B], the 
coefficient K can be found to be equal to 0.52 for a 
60” channel angle. To be precise, the coefficient K 
should vary with the channel apex angle 8. However, 
neglecting this effect and assuming K to be constant, 
results in a maximum error of 2.5% when compared 
with the available experimental data of Ayyaswamy 
e6 al. [6]. 

From the preceding discussion it is apparent that 
the actual velocity of the free liquid surface can actu- 
ally be expressed as : 

iif = Ku;, (20) 

where L$ is determined by equation (19). 
Utilizing the actual average velocity of the liquid 

surface, a dimensionless vapor-liquid interface flow 
number, L,, can be defined as : 

Aii 
G=:, 

Uf 
(21) 

where : 

Aa = iif-tiiirl, (22) 

and iir is the average velocity of the free liquid surface 
obtained from equation (20). Substituting equation 
(21) into equation (22) results in an expression for the 
average velocity at Ye of: 

Ur2 - =2&(1-L,). (23) 



Liquid pressure drop in triangular microgrooves 2215 

Combining and substituting results in an expression 
for the average velocity, ar2, of: 1 -(E lY(zT sinh[T(2+@] + sinhE0) 

x [1+($]7 (“” ) 

dB 

sinh ;2$ 1 
X 

~,Z{~osac~~(~-0)-[sin2+cos2ccsin2(~-~)]0~5~ 2 

[. cos (CI + 4) 
] +(-%&)I1 ;[l-($]d@. (25) 

x [4&B-228’] do. (24) 

From equation (24), it can be seen that the average 
velocity of the liquid surface is not only related to a, 
4h, 0, ~v/z, and (- dp/dz), but also to L,. The physical 
meaning of the dimensionless vapor flow number, L,, 
is as follows : when L, > 1, the liquid velocity is par- 
allel to the vapor velocity, but the flow directions are 
opposite. In this case, the relative vapor velocity has 
the largest value and as a result has the greatest influ- 
ence on the liquid flow. The velocity distribution with 
vapor-liquid frictional interaction for this case is 
shown in, Fig. 3a. When L, = 1, as shown in Fig 3b, 
the liquidsurface velocity is equal to zero, which can 
occur as a result of vapor-liquid frictional interactions 
or due to direct contact with a solid surface. 

When 0 < L, < 1, as shown in Fig. 3c, the direction 
of the liquid flow is different from that of the vapor 
flow, and the velocity of the vapor is smaller than 
when L, 2 1 as shown in Fig. 3a and b. When L, = 0, 
the liquid surface behaves as a free surface without 
any vapor-liquid interaction, as shown in Fig. 3d. 
And finally, when L, < 0, the direction of the liquid 
flow is the same as that of vapor flow, as shown in 
Fig. 3e. 

In actual applications, the value of L, can be 
obtained utilizing the method presented by Lock [7], 
Potter [PI, or Schlichting [9]. Once iir2 is obtained, 
the velocity at any position (r, @) can be found by 
numerical evaluation of equation (11). In addition, 
the volumetric flow-rate, Q, passing through any 
cross-section may be determined by integrating the 
velocity distribution : 

2[1-(-l)“] 

nrc[l-($y]sinh(ga) 

x (-ksinh(Ea)+e[(:)-cosh(ga)] 

+Np {i(z>‘sinh ($a) - E[ (z) 

x cosh(Ea)-1]}) sin (“$) + f (:) 

The parameters a, r2, yl, and Np included in equation 
(25) are determined from equations (9), (lo), (121, 
and (13)) respectively. 

To this point, all of the techniques employed have 
been analytical. In evaluating equation (25), it is 
apparent that an exact analytical solution would be 
quite difficult to obtain: however, the coordinate 
transform utilized earlier changes the irregular cross- 
section of the liquid flow into a regular shape. Hence, 
a numerical difference method can be employed to 
solve this expression. 

It is customary to define the friction factor as : 

f= 
-dp/dz D, 

0.5pU2 4 
(26) 

in which 0 = Q/A, and D, = 4A/p, wherein A and P 
are the cross-sectional area and the wetted perimeter, 
respectively, and are equal to : 

/&f 
s 

:” (r: -Y:) d0, (27) 

P = 2r,. (28) 

The friction factor Reynolds number product, J’Re, 
may be written as 

fRe = 
- dp/dz D, P--b 

2p U2 >( > LL . 
(29) 

Figures 46 illustrate the relationship between the 
friction factor Reynolds product, fRe, and the contact 
angles, 8, as a function of the dimensionless vapor 
flow number, L,. From these results, it is apparent 
that when L, increases, the friction factor Reynolds 
number product increases. In addition for a given 
dimensionless vapor flow number, the friction factor 
Reynolds number product increases with increasing” 
contact angle. 

To verify the analytical model presented here, data 
from two previous investigations were compared with 
the values predicted by the model described above. 
The first of these was conducted by Sparrow et ul. [4]. 
Their investigation is equivalent to L, = 1, one of the 
special cases of the current study. When the same 
wetted perimeter and geometric shapes were evalu- 
ated, identical results were obtained. 

For the second case, the values predicted by the 
present model were compared with both the exper- 
imental and analytical results obtained by Ayya- 
swamy et al. [6], where L, = 0. The results of this 
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FIG. 3. (a) Vapor-liquid interaction at L, > 1. (b) Vapor-liquid interaction at L, = 1. (c) Vapor-liquid 
interaction at 1 > L, > 0. (d) Vapor-liquid interaction at L,, = 0. (e) Vapor-iiquid interaction at L, < 0. 

comparison are illustrated in Figure 7. As shown, contact angle of a = 60”, the method described here 
the correlation between the predicted and measured results in a value of approximately 14.4. The analytical 
results is quite good at channel angles of 20”, 40”, and model of Ayyaswamy et al. results in a value of 13.8, 
60” for all contact angles. However, as the channel and the experimental data yield a value of 14.2. This 
apex angle and contact angle increase, the error results in a variation between the prediction methods 
increases. At a channel apex angle of 24 = 60” and a of approximately 4.3% and 1.4%. 
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Fm. 3--continued. 

CONCCUSlQNS 

A mathematical model of the liquid pressure drop 
occurring in triangular grooves with vapor A ow OCCUT- 

ring across a free surface, similar to the type occurring 
in the chemical processing industry or micro heat pipes 
was developed. The model considered the inter-facial 
shear stresses and resulting frictional interaction at the 
liquid-vapor interface to determine how the direction 

and magnitude of the vapor flow influences the liquid 
flow. A dimensionless vapor-liquid interface flow 
number, I.,, was introduced to establish a relationship 
between the two flows. 

The resulting model was solved using a combination 
of analytical and finite difference methods to over- 
come the dificulty resulting from the irregular cross- 
section. Results are reported for channel angles rang- 
ing from 20 to 60”, contact angles from 0 to 60”, and 
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Liquid w 
FIG. 3-continued. 
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FIG. 4. Friction factor with contact angle at 24 = 20”. 
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FIG. 5. Friction factor with contact angle of 24 = 40”. 

dimensionless vapor-liquid interface flow numbers of 
0, 0.25, 0.5, 0.75, and 1. The results indicate that the 
friction factor Reynolds number product is strongly 
dependent upon the channel angle, the contact angle, 
and the dimensionless vapor-liquid interface flow 
number. Comparison of the predicted results with 
documented and available experimental data for cases 

0 10 20 30 40 50 60 
CONTACTANGLE (DEGREE) 

FIG. 6. Friction factor with contact angle of 24 = 60”. 
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FIG. 7. Friction factor with contact angle for various groove 
angles at L, = 0. 

of L, = 1 and L, = 0 were made and found to be in 
excellent agreement, with the largest variation occur- 
ring for the case of contact angles of 60” and apex 
angles of 60”. 
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